Cloud Computing for Mission Design and Operations

J. Arrieta R. Beswick D. Gerasimatos

Jet Propulsion Laboratory, California Institute of Technology

SpaceOps 2012 Stockholm, Sweden June 12, 2012

Copyright 2012 California Institute of Technology Government Sponsorship Acknowledged

In short

 We recognize the value of the cloud computing model, and would like to capture its benefits

In short

- We recognize the value of the cloud computing model, and would like to capture its benefits
- Valid concerns prevent widespread and expedited adoption

In short

- We recognize the value of the cloud computing model, and would like to capture its benefits
- Valid concerns prevent widespread and expedited adoption
- It is possible to expedite adoption by internally adopting the cloud computing philosophy; we propose a seven-step roadmap

A definition of cloud computing (NIST)

A model for enabling ubiquitous, convenient, on-demand access to a shared pool of configurable computing resources (e.g., networks, servers, storage, applications, and services) that can be rapidly provisioned and released with minimal management effort or service provider interaction

A definition of cloud computing (NIST)

A model for enabling ubiquitous, convenient, on-demand access to a shared pool of configurable computing resources (e.g., networks, servers, storage, applications, and services) that can be rapidly provisioned and released with minimal management effort or service provider interaction

- It is a model for using existing technology
- It favors the what over the how; concepts over concrete devices (e.g., storage over hard drive, or computing power over workstation)

Sources of Complexity

- Proliferation of systems
- Proliferation of formats
- Proliferation of protocols
- Siloing of datasets

Sources of Complexity

- Proliferation of systems
- Proliferation of formats
- Proliferation of protocols
- Siloing of datasets

Architectural Evolution

- Associative Elasticity
- Semantical Hyperdata
- Living Workflows

Sources of Complexity

- Proliferation of systems
- Proliferation of formats
- Proliferation of protocols
- Siloing of datasets

Architectural Evolution

- Associative Elasticity
- Semantical Hyperdata
- Living Workflows
- Abstraction

Sources of Complexity

- Proliferation of systems
- Proliferation of formats
- Proliferation of protocols
- Siloing of datasets

Architectural Evolution

- Associative Elasticity
- Semantical Hyperdata
- Living Workflows
- Abstraction

Summary of Architecture

Expose data and algorithms as resource-oriented Web services, coordinated via messaging and running on virtual machines

Sources of Complexity

- Proliferation of systems
- Proliferation of formats
- Proliferation of protocols
- Siloing of datasets

Architectural Evolution

- Associative Elasticity
- Semantical Hyperdata
- Living Workflows
- Abstraction

Summary of Architecture

Expose data and algorithms as resource-oriented Web services, coordinated via messaging and running on virtual machines

- Virtual Machine
- HTTP Server
- Database
- Message Broker
- Serialization Format
- Web Application
- Web Client

Hypervisor: key to elasticity

Work decoupling

Work decoupling

Work streamlining and decoupling

Work distribution

Work distribution

Work aggregation, distribution, and decoupling

Message broker: key to abstraction (example)

Data Evolution

(1) adopt a common data-interchange format \rightarrow make data usable

typical legacy output

EPOCH: 18-Dec-2012 00:12:34.567891 UTC

FRAME: EME2000

POSITION: 1.234567891D+06 -7.6543210D+06 3.4567891D+02

Data Evolution

(1) adopt a common data-interchange format \rightarrow make data usable

typical legacy output

```
EPOCH: 18-Dec-2012 00:12:34.567891 UTC
FRAME: EMEZOO
POSITION: 1.234567891D+06 -7.6543210D+06 3.4567891D+02
```

simple JSON translation

```
{"epoch":{
    "day":18, "month":12, "year":2012,
    "hour":0, "minute":12, "second":34.567891,
    "iso": "2012-12-18700:12:34.567891",
    "clock": "utc"
    },
    "frame": "eme2000",
    "position":[1.234567891e6, -7.6543210e6, 3.4567891e2]}
```


Data Evolution

(1) adopt a common data-interchange format \rightarrow make data usable

typical legacy output

```
EPOCH: 18-Dec-2012 00:12:34.567891 UTC
FRAME: EME2000
POSITION: 1.234567891D+06 -7.6543210D+06 3.4567891D+02
```

simple JSON translation

```
{"epoch":{
    "day":18, "month":12, "year":2012,
    "hour":0, "minute":12, "second":34.567891,
    "iso":"2012-12-18T00:12:34.567891",
    "clock":"utc"
    },
    "frame":"eme2000",
    "position":[1.234567891e6, -7.6543210e6, 3.4567891e2]}
```

(2) evolve raw data to semantical hyperdata \rightarrow increase information content

augmented JSON translation

Workflow evolution

(3) decompose workflows into simple actions \rightarrow granular, reusable units of work

Workflow evolution

(3) decompose workflows into simple actions \rightarrow granular, reusable units of work

(4) categorize data and algorithms as resources \rightarrow addressable, independent entities

Protocol evolution

(5) Provide a common interface to resources via HTTP \rightarrow access standardization

Verb	Operation
HEAD	read the metadata provided in a resource's headers
GET	read a resource in a specified representation
POST	create a resource by providing a specific representation
PUT	update a resource in whole or in part
DELETE	delete a resource

Protocol evolution

(5) Provide a common interface to resources via HTTP \rightarrow access standardization

Verb	Operation
HEAD	read the metadata provided in a resource's headers
GET	read a resource in a specified representation
POST	create a resource by providing a specific representation
PUT	update a resource in whole or in part
DELETE	delete a resource

(6) Coordinate the system interaction via messaging \rightarrow living, adaptable workflows

Protocol evolution (continued)

(7) Deploy worker and data nodes in virtual machines \rightarrow abstract, elastic, configurable system

Database	Legacy App	Optimizer	Optimizer				
Hypervisor							
Hardware							

Conclusion

- It is possible to immediately capture some benefits of the cloud computing model
- The architecture may help reduce some common sources of complexity
- The implementation may enable teams and agencies to evaluate the cloud computing model in their specific context, with minimal infrastructure changes, and before committing to a given provider

